

A Survey Of Some Techniques For Higher Dimensional Data

Jul 30 2014

Charlotte Wickham

Multi/High Dimensional Data

- **Two** continuous variables easily examined in a scatterplot,
- A third added using size, or colour.
- Maybe facet on a **fourth**.
- What about more than that?
- What are we looking for?
 - simple relationships between variables
 - low dimensional structure
 - clusters

We'll think about a having a collection of observations, where each observation consists of measurements on multiple variables.

We are interested in clusters of observations, and relationships between variables.

> atmos
Source: local data frame [41,472 x 11]

	lat	long	year	month	surftemp	temp	pressure	ozone	cloudlow	cloudmid	cloudhigh
1	36.20000	-113.8	1995	1	272.7	272.1	835	304	7.5	34.5	26.0
2	33.70435	-113.8	1995	1	279.5	282.2	940	304	11.5	32.5	20.0
3	31.20870	-113.8	1995	1	284.7	285.2	960	298	16.5	26.0	16.0
4	28.71304	-113.8	1995	1	289.3	290.7	990	276	20.5	14.5	13.0
5	26.21739	-113.8	1995	1	292.2	292.7	1000	274	26.0	10.5	7.5
6	23.72174	-113.8	1995	1	294.1	293.6	1000	264	30.0	9.5	8.0
7	21.22609	-113.8	1995	1	295.0	294.6	1000	258	29.5	11.0	14.5
8	18.73043	-113.8	1995	1	298.3	296.9	1000	252	26.5	17.5	19.5
9	16.23478	-113.8	1995	1	300.1	297.8	1000	250	27.5	18.5	22.5
10	13.73913	-113.8	1995	1	300.1	298.7	1000	250	26.0	16.5	21.0

observation is a spatial grid cell in a month of a year, variables are surftemp, temp, pressure, ozone, cloudlow, cloud mid and cloudhigh Scatterplot matrices Parallel coordinates Tours Glyphs Heatmaps + Seriation

Scatterplot matrix

Good at:

finding relationships between pairs of variables

clusters, if clusters are well defined with only one or two variables

Bad at:

finding low dimensional structure

finding clusters that aren't easily defined with only one or two variables

Parallel coordinates

Explain on board:

basic idea, put each variable on it's own vertical axis, draw observations in as lines.

Parallel coordinates

Lot's of choices: how to scale each variable how to order the axes color?

Tours

A **projection** takes a high dimensional vector and maps it to a lower dimension.

- A linear projection is like a weighted average.
- Principal components is one way to find weights, but there are infinitely many others!
- **Tours** take you on a tour of this infinite space of projections.
 - *guided* try to move to a more "interesting" projection *grand* move between random projections

Glyphs

Use a little plotting symbol for each location that captures all the variables.

36.2113.8	36.2111.3	36.2108.79	36.2106.29	36.2103.78
Ø	G	G	6	G
36.2101.28	36.298.77	36.296.27	36.293.77	36.291.26
G	G	G	G	G
36.288.76	36.286.25	36.283.75	36.281.24	36.278.74
D	D	G	G	G
36.276.23	36.273.73	36.271.23	36.268.72	36.266.22
5	B	\mathcal{C}	\mathcal{C}	\mathcal{C}
36.263.71	36.261.21	36.258.7	36.256.2	
	\mathcal{C}	\bigcirc	\bigcirc	

variable

MMMM / / MMM A A A A A A A MMMMMMMMM NNNNNNNNNNNNN NNNNNNNNNNN \mathcal{N} WWWWWWWWWWWWWWWW whole who who who when he have MMMMMMMMMMMM M.M.M.M.M.M.M.M.M.M.V.V.V.V. 1/M/M/M/M/M/M/W/W/W/W/

Each glyph here is at the spatial location of a grid point, and is a little time series of temperature.

Heatmaps

Observations in rows, variables in columns, value (scaled) mapped to hue.

Seriation

Order of observations matters for finding patterns.

Use ordering (and/or clustering) method to find an order.

A little note on maps

Most shapes will need to be drawn with geom_path, or geom_polygon

each observation (row in your data frame) is a coordinate,

group aesthetic identifies single objects

order aesthetic identifies order of drawing

use coord_map

ggmap add layers from google maps, stamen maps, etc.